MiR-200a Suppresses the Proliferation and Metastasis in Pancreatic Ductal Adenocarcinoma through Downregulation of DEK Gene1

نویسندگان

  • Xiaoyu Wu
  • Guannan Wu
  • Zhenfeng Wu
  • Xuequan Yao
  • Gang Li
چکیده

MiR-200a has been reported to be able to suppress the epithelial-mesenchymal transition process in pancreatic cancer stem cells, suggesting that miR-200a could suppress the metastasis of pancreatic ductal adenocarcinoma (PDAC). However, its role in proliferation and metastasis of PDAC and the underlying mechanism by which miR-200a works in PDAC have not been elucidated. In our study, we for the first time identified that DEK gene is a direct downstream target of miR-200a. It was found that overexpression of miR-200a decreased DEK expression, suppressing the proliferation, migration, and invasion of PDAC cells. Meanwhile, knockdown of miR-200a can increase DEK level, promoting the proliferation, migration, and invasion of PDAC cells. Our study demonstrated that miR-200a suppresses the metastasis in pancreatic PDAC through downregulation of DEK, suggesting that miR-200a may be used as a novel potential marker in prediction of metastasis of PDAC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology DCAMKL-1 Regulates Epithelial–Mesenchymal Transition in Human Pancreatic Cells through a miR-200a–Dependent Mechanism

Pancreatic cancer is an exceptionally aggressive disease in great need of more effective therapeutic options. Epithelial–mesenchymal transition (EMT) plays a key role in cancer invasion and metastasis, and there is a gain of stem cell properties during EMT. Here we report increased expression of the putative pancreatic stem cell marker DCAMKL-1 in an established KRAS transgenic mouse model of p...

متن کامل

DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism.

Pancreatic cancer is an exceptionally aggressive disease in great need of more effective therapeutic options. Epithelial-mesenchymal transition (EMT) plays a key role in cancer invasion and metastasis, and there is a gain of stem cell properties during EMT. Here we report increased expression of the putative pancreatic stem cell marker DCAMKL-1 in an established KRAS transgenic mouse model of p...

متن کامل

Interleukin-9 Promotes Pancreatic Cancer Cells Proliferation and Migration via the miR-200a/Beta-Catenin Axis

Background. Both IL-9 and miR-200a are involved in the pathogenesis of cancers; however, the role of IL-9 in pancreatic cancer and the possible underlying mechanisms remain unknown. The aim of this study was to investigate the effect of IL-9 on pancreatic cancer cells and its interaction with miR-200a. Methods. Pancreatic cancer cells (PANC-1 and AsPC-1) were treated with IL-9 and the expressio...

متن کامل

Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs

Objective(s): Silibinin, as an herbal compound, has anti-cancer activity. Because of low solubility of silibinin in water and body fluids, it was encapsulated in polymersome nanoparticles and its effects were evaluated on pancreatic cancer cells and cancer stem cells.Materials and Methods: MIA PaCa-2 pancreatic cancer cells were treated ...

متن کامل

MicroRNA-200a suppresses metastatic potential of side population cells in human hepatocellular carcinoma by decreasing ZEB2

Although microRNA-200a (miR-200a) is frequently downregulated in cancer, its role in side population (SP) has not been investigated. In this study, 101 pairs of primary hepatocellular carcinoma (HCC) tissues and matched normal control tissues were analyzed for miR-200a expression and its clinicopathological value was determined. We found that miR-200a was downregulated in HCC/SP and this was as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016